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NORTHSTAR: A Parameter Estimation

Method for the Spatial Autoregression Model

Mete Celik, Baris M. Kazar, Shashi Shekhar, Daniel Boley, David J. Lilja

Abstract

Parameter estimation method for the spatial autoregression model (SAR) is important because of

the many application domains, such as regional economics, ecology, environmental management, public

safety, transportation, public health, business, travel and tourism. However, it is computationally very

expensive because of the need to compute the determinant of a large matrix due to Maximum Likelihood

Theory. The limitation of previous studies is the need for numerous computations of the computationally

expensive determinant term of the likelihood function. In this paper, we present a faster, scalable and

NOvel pRediction and estimation TecHnique for the exact SpaTial Auto Regression model solution

(NORTHSTAR). We provide a proof of the correctness of this algorithm by showing the objective

function to be unimodular. Analytical and experimental results show that the NORTHSTAR algorithm

is computationally faster than the related approaches, because it reduces the number of evaluations of

the determinant term in the likelihood function.

Index Terms

Spatial Autoregression Model, Spatial Autocorrelation, Spatial Data Mining, Spatial Databases,

Maximum Likelihood Theory.
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I. INTRODUCTION

Given a spatial framework, observations on a dependent variable, a set of explanatory variables,

and neighborhood relationships (spatial dependencies) among the spatial data, SAR parameter

estimation based on Maximum Likelihood Theory (ML) aims to find the optimum SAR model

parameters by minimizing the likelihood function of the SAR model solution.

The massive sizes of geo-spatial datasets in many application domains make it important

to develop scalable parameter estimation algorithms of the SAR model solutions for location

prediction and classification. These application domains include regional economics [24], ecology

[9], [40], environmental management [19], public safety [21], transportation [41], public health

[43], business, travel and tourism [1], [39], [38]. For example, predicting the locations of the bird

nests in a wetland is a location prediction problem. In this example dependent variable can be

bird nest location and explanatory variables can be vegetation durability, water depth, vegetation

distribution, etc. Initially classical prediction model, e.g., linear regression was used for this

problem [29]. However, it yielded low prediction accuracy [29] because the autocorrelation in

spatial data violates the independently and identically distributed (i.i.d.) assumption that underlies

linear regression. SAR improved prediction accuracy in this problem [9], [40].

However, estimation of the SAR model parameters is computationally very expensive because

of the need to compute the determinant of a large matrix in the likelihood function. The Maximum

Likelihood function for SAR parameter estimation contains two terms, namely a determinant

term and SSE term. The former involves computation of the determinant of a very large matrix,

which is a well-known hard problem in numerical analysis. For example, the exact SAR model

parameter estimation for a 10,000-point spatial problem can take tens of minutes on common

desktop computers. Computation costs make it difficult to use SAR for many important spatial

problems which involve millions of points. Because of the high cost of determinant computation,

the use of the SAR model has been limited to small problem sizes, despite its promise to improve

prediction and classification accuracy.

Previous approaches compute the determinant term of a large matrix of the SAR model

solution repeatedly to determine the Maximum Likelihood values of SAR parameters, namely,

an autocorrelation parameter and weights for explanatory variables [26], [32], [33], [34], [22],

[37]. For example, they find the optimum spatial autocorrelation parameter using iterative search
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methods, (e.g., golden section search) in the interval of possible values (e.g., [0,1]).

In contrast, our approach yields a reduction in computation cost by reducing the number

of determinant computations of a very large matrix. The key idea is to narrow the search

interval by a cheap computation yielding an upper bound on the spatial autocorrelation parameter

(Lemma 4.3). Recall that the ML-based SAR model solution contains two terms, a determinant

term and an SSE term. Both terms involve the spatial autocorrelation parameter and both terms

are unimodular in the autocorrelation function (Theorem 4.1). In addition, the location of the

autocorrelation parameter that minimizes the SSE term of the ML function is an upper bound on

the autocorrelation parameter that optimizes the likelihood function. This upper bound allows

us to narrow the search interval and reduce the number of iterations and number of determinant

evaluations of an iterative search to estimate the spatial autocorrelation parameter of the SAR

model. Of course, there is a trade-off between the extra computations to determine the upper

bound and the savings from reduced number of iterations. If the overhead of determining the

upper bound is much smaller than the resulting savings, then our approach is computationally

more efficient than the previous approaches.

The paper evaluates the proposed approach analytically and experimentally. Analytical and

experimental results show that the proposed approach is computationally more efficient than the

previous work. We analyzed that the evaluation of the SSE term of the ML function gives an upper

bound on the autocorrelation parameter of the likelihood function by using SAR Unimodularity

Theorem 4.1 and Lemma 4.3. Experimental results show that the computational cost of the

proposed approach is usually smaller than the cost of related approaches. The experiments show

that the proposed approach is computationally more efficient than the related approaches in

terms of execution time and memory usage. In addition, when the value of the autocorrelation

parameter decreases, the advantage of the proposed approach increases. It is also observed that

determinant computation saving increases for the bigger neighborhood structures.

A. An Illustrative Application Domain

We now introduce an example which will be used throughout this paper to illustrate the

different concepts in spatial data mining. We are given data about two wetlands, named Darr

and Stubble, on the shores of Lake Erie in Ohio USA in order to predict the spatial distribution of

a marsh-breeding bird, the red-winged blackbird (Agelaius phoeniceus). The data was collected
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Fig. 1. (a) The geometry of the wetland and the locations of the nests, (b) The spatial distribution of vegetation durability over

the marshland, (c) The spatial distribution of water depth, and (d) The spatial distribution of distance to open water.

from April to June in two successive years, 1995 and 1996 [29].

A uniform grid was imposed on the two wetlands and different types of measurements were

recorded at each cell or pixel. In total, values of seven attributes were recorded at each cell.

Domain knowledge is crucial in deciding which attributes are important and which are not.

For example, Vegetation Durability was chosen over Vegetation Species because specialized

knowledge about the bird-nesting habits of the red-winged blackbird suggested that the choice

of nest location is more dependent on plant structure and plant resistance to wind and wave

action than on the plant species.

For simplicity, we focus on three independent attributes, namely Vegetation Durability, Dis-

tance to Open Water, and Water Depth. The significance of these three variables was established

using classical statistical analysis. The spatial distribution of these variables and the actual nest

locations for the Darr wetland in 1995 are shown in Figure 1. These maps illustrate the following
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Fig. 2. Spatial distribution satisfying random distribution assumptions of classical regression

two important properties inherent in spatial data.

1) The value of attributes which are referenced by spatial location tend to vary gradually over

space. While this may seem obvious, classical data mining techniques, either explicitly or

implicitly, assume that the data is independently generated. For example, the maps in

Figure 2 show the spatial distribution of attributes if they were independently generated.

Ozesmi et al. has applied classical data mining techniques like logistic regression [29] and

neural networks [28] to build spatial habitat models. Logistic regression was used because

the dependent variable is binary (nest/no-nest) and the logistic function “squashes” the

real line onto the unit-interval. The values in the unit-interval can then be interpreted as

probabilities. The study concluded that with the use of logistic regression, the nests could

be classified at a rate 24% better than random [28].

2) The spatial distributions of attributes sometimes have distinct local trends which contradict

the global trends. This is seen most vividly in Figure 1(b), where the spatial distribution

of Vegetation Durability is jagged in the western section of the wetland as compared to

the overall impression of uniformity across the wetland. This property is called spatial

heterogeneity.

Classification accuracy achieved by classical and spatial regression are compared on the test

data. Receiver Operating Characteristic (ROC) [14] curves can be used to compare classification

accuracy. ROC curves plot the relationship between the true positive rate (TPR) and the false

positive rate (FPR). For each cut-off probability b, TPR(b) measures the ratio of the number
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of sites where the nest is actually located and was predicted divided by the number of actual

nest sites. The FPR measures the ratio of the number of sites where the nest was absent but

predicted, divided by the number of sites where the nests were absent. The ROC curve is the

locus of the pair (TPR(b), FPR(b)) for each cut-off probability. The higher the curve above the

straight line TPR=FPR, the better the accuracy of the model.

Figure 3(a) illustrates the ROC curves for spatial autoregression regression (SAR) and classical

regression models built using the real surveyed Darr95 learning data and Figure 3(b) displays

the ROC curve for the real Stubble test data [39]. It is clear that using spatial regression resulted

in better predictions at all cut-off probabilities relative to the classical regression model.

Clearly, by including a spatial autocorrelation term, there is substantial and systematic im-

provement for all levels of cut-off probability on both the learning data (1995 Darr) and test

data (1995 Stubble).

0.3

0.4

0.5

0.6

0

0

0.1

0.2

0.7

0.8

0.9

1

T
ru

th
 P

o
si

ti
ve

 R
at

e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

ROC Curve for learning data(Darr 95)

Spatial Regression

Classical Regression

(a) ROC curves for learning

0.2 0.5 0.6 0.80.3

0.3

0.4

0.5

0.6

0.10 0.4 0.7 0.9 1

False Positive Rate

0

0.1

0.2

0.7

0.8

0.9

1
ROC Curve for testing data(Stubble marshland 1995)

Tr
ut

h 
Po

si
tiv

e 
R

at
e

Classical Regression
Spatial Regression

(b) ROC curves for testing

Fig. 3. (a) Comparison of the classical regression model with the spatial autoregression model on the Darr learning data. (b)

Comparison of the models on the testing data.

B. Problem Statement

Given a spatial framework S for the underlying spatial graph G, and the attribute functions

fxk over S, and the neighborhood relationship R, we can build the SAR model and find its

parameters by minimizing the objective (log-likelihood) function as can be seen in (1).
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`(�jy) = �2
n

ln jI� �Wj| {z }
log�det

+ ln((I� �W)y)T (I� x(xTx)�1 xT )T (I� x(xTx)�1 xT )((I� �W)y)| {z }
SSE

(1)

The details of the derivation of the log-likelihood function for the ML-based SAR model is

given in Appendix VI.

The problem of parameter estimation of the SAR model using Maximum Likelihood Theory

(ML) is formally defined as follows:

Given:

� A spatial framework S consisting of sites fs1; :::; sng for an underlying geographic space

G.

� A collection of explanatory functions fxk : S ! Rk, k = 1; :::;K. Rk is the range of

possible values for the explanatory functions.

� A dependent function fy : S ! Ry.

� A family F (i.e., y = �Wy+x�+�) of learning model functions mapping R1� :::�RK !
Ry.

� A neighborhood relationship on the spatial framework.

Find:

� The SAR scalar parameters � and the regression coefficient vector �

Objective:

� Minimizing the objective function, log-likelihood function `(�jy) given in (1), of the ML-

based SAR model solution.

Constraints:

� Geographic space S is a multi-dimensional Euclidean Space.

� The values of the explanatory functions, the fxk’s and the response function fy may not be

independent with respect to those of nearby spatial sites, i.e., spatial autocorrelation exists.

� The domain Rk of explanatory functions is the one-dimensional domain of real numbers.

� The domain of the dependent variable, Ry = f0; 1g.

� The SAR parameter � varies in the range [0; 1).
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� The error is normally distributed (Gaussian error), i.e., � � N(0; �2I) IID. In other words,

the error is composed of normally distributed random numbers with unit standard deviation

and zero mean.

� The neighborhood matrix W exhibits sparsity.

For the bird location prediction example, dependent variable y can be the locations of the

nests. Explanatory variables x can be independent variables, namely observations of Vegetation

Durability, Water Depth, and Distance to Open Water. Neighborhood matrix W represents the

spatial dependencies of the neighboring locations. In the W matrix, neighboring locations are

represented by 1s, and the rest of the matrix contains a value of zero.

TABLE I

THE NOTATION USED IN THIS STUDY

Variable Definition Variable Definition

� The spatial autoregression (autocorrela-

tion) parameter

I Identity matrix

y n-by-1 vector of observations on the de-

pendent variable

� n-by-1 vector of unobservable error

x n-by-k matrix of observations on the ex-

planatory variable

bl Lower bandwith of the neighborhood ma-

trix

W n-by-n neighborhood matrix that accounts

for the spatial relationships (dependencie

s) among the spatial data

bu Upper bandwith of the neighborhood ma-

trix

k Number of features tol Tolerance value

� k-by-1 vector of regression coefficients � Eigenvalue of a matrix

n Problem size (number of observation

points or pixels)

�2 The common variance of the error �

C. Related Work

The Maximum Likelihood Theory (ML) is used in order to estimate the SAR model param-

eters. The ML function (log-likelihood) of the SAR model solution given in (1) is computed

by calculating the maximum of the sum of the logarithm of the determinant (log-det term) of a



9

large matrix and a sum-of-squared errors (SSE) term [26], [32], [33], [34], [22], [37]. The ML-

based SAR model solutions can be classified into two categories, exact SAR model solutions

and approximate SAR model solutions, due to the strategy used to calculate the log-det term of

a large matrix. This paper focuses on ML-based exact SAR model solutions.

To estimate the parameters of a ML-based SAR model solution, the log-likelihood function

can be constructed, as shown in (1). The details of the derivation of the log-likelihood function

for the ML-based SAR model is given in Appendix VI. The log-likelihood function of the ML-

based SAR model solution basically contains two terms, namely, a log-det term and an SSE term

as can be seen in (1). The estimation procedure involves computation of the logarithm of the

determinant of (log-det) a large matrix, i.e. (I � �W). Computing the determinant of a matrix

is very expensive.

In the literature, there are two ML-based exact SAR model solutions, an eigenvalue com-

putation (EV) based solution [26] and a direct (straight) sparse log-det (SLD) based solution

[30]. The EV-based SAR model solution uses dense data structures to find the determinant

of a very large matrix. Because of the dense representation of the matrices in the EV-based

approach, LU factorization of a large matrix requires O(n3) operations, where n is the number

of observations. LU factorization is used to compute determinant of the large matrix [13], [16].

This leads to high execution time and memory usage. In the SAR formulation, neighborhood

matrix W is sparse. Pace and Barry proposed an SLD-based SAR model solution which uses

sparse LU factorization using sparse data structures [30]. The number of operations of sparse

LU factorization is O(2nbubl), where bu and bl correspond to the upper and lower bandwidths of

the neighborhood matrix W. Using sparse data structures drastically decreases the computation

time and memory usage. However, even if sparse data structures are used, the computation of

the computationally expensive log-det term of the log-likelihood function must be repeated in

the parameter estimation process of the SAR model (Figure 4). As a result, ML-based exact

SAR solutions in the literature exhibit high computational cost and thus are not scalable to large

problem sizes.

In contrast, we limit the search space of the computationally expensive determinant compu-

tation of the log-likelihood function by finding an upper bound on the spatial autocorrelation

parameter. First, we calculate the computationally efficient term (SSE term) of the log-likelihood

function for finding an upper bound on the spatial autocorrelation parameter and then, we limit the
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Input: (�start,tol, W)

Output: (�opt; �opt; �
2

opt)

Step:

1. Step (i) f

2. �opt=GSS(range = [0; 1℄;

3. start = f�startg;

4. floglike = �2
n

� ln jI� �Wj+ SSE)

5. Compute (�opt; �
2

opt) g

6. return (�opt; �opt; �
2

opt)

Fig. 4. The pseudocode of the EV-based and SLD-based SAR model solutions. The only difference of the related works is

deciding whether to use sparse data structures or not. SLD-based solution uses sparse data structures and EV-based solution

uses dense data structures. GSS stands for golden section search.

number of evaluations of the computationally expensive term (log-det term) of the log-likelihood

function using this upper bound to find the optimum SAR model autocorrelation parameter. The

proposed algorithm (NORTHSTAR) promises to reduce the computational cost and to scale to

large problem sizes.

D. Contributions

Major contributions of this study include the following:

1) We developed a faster, scalable and NOvel pRediction and estimation TecHnique for the

exact SpaTial AutoRegression model solution (NORTHSTAR). In the first step of our

approach, the SAR model parameters are estimated using the much less computationally

complex sum-of-squared errors (SSE) term of the log-likelihood function. A second com-

putationally more complex step is required only if the parameters obtained in the first

step are not in the desired precision; in this case, the log-det term is embedded into the

estimation process.

2) We analytically showed that the estimated SAR model parameter obtained after the first

step can be used as an upper bound in the second step based on SAR Unimodularity

Theorem 4.1 and Lemma 4.3, if the second step is necessary.
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3) We experimentally showed that the proposed heuristic, NORTHSTAR, is computationally

more efficient and scalable (in terms of memory usage and CPU time) than the previous

work, i.e., the eigenvalue (EV) based and straight log-det (SLD) based approaches.

E. Outline of the Paper and Scope

The remainder of the paper is organized as follows: Section II presents the theory of the

SAR model. The proposed approach, NORTHSTAR, for the SAR model solution is presented in

section III. Section IV gives the analysis of the NORTHSTAR algorithm and section V presents

experimental evaluations of the proposed algorithm. We conclude and summarize the paper with

a discussion of future work in section VI.

This paper focuses on developing a new ML-based exact SAR model solution, NORTHSTAR.

II. BASIC CONCEPTS: SPATIAL AUTOREGRESSION (SAR) MODEL

The SAR model [11], [2], also known in the literature as the spatial lag model [2] or mixed

regressive model [31], is an extension of the linear regression model and is given in (2).

y = �Wy + x� + � (2)

In the equation, y is the n-by-1 vector of observations on the dependent variable, where n

is the number of observation points; � is the spatial autoregression parameter; W is the n-

by-n neighborhood matrix that accounts for the spatial relationships (dependencies) among the

spatial data; x is the n-by-k matrix of observations on the explanatory variable, where k is the

number of features; � is a k-by-1 vector of regression coefficients; and � is an n-by-1 vector of

unobservable error which is assumed to be generated from independent and identical standard

normal distribution. Spatial autocorrelation term �Wy is added to the linear regression model

in order to model the strength of the spatial dependencies among the elements of the dependent

variable, y. Data structures of the SAR equation can be seen in Figure 5. Construction of the

neighborhood matrix W is discussed in Appendix I for regular and irregular grid spaces.

The solution procedure for the SAR equation is decided to be more complex than that for

the linear regression equation because of the presence of the �Wy term on the right side of

the equation. Also notice that the W matrix is quadratic in size relative to the size of the data
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Fig. 5. Data structures of SAR Model

samples. Fortunately, very few entries of W are non-zero, and sparse matrix techniques are used,

which exploit this fact, to speed up the solution process.

III. PROPOSED APPROACH

This section describes the new ML-based exact SAR model solution, NORTHSTAR, and then

discusses the design decisions.

A. NORTHSTAR Algorithm

The NORTHSTAR algorithm aims to decrease the number of computations of the computa-

tionally expensive log-det term of the log-likelihood function which is given in (1) by finding

an upper bound on the spatial autocorrelation parameter. In the first step of the algorithm,

an upper bound on the spatial autocorrelation paremeter is estimated using a computationally

more efficient SSE term of the log-likelihood function of the SAR model. In the second step,

the computationally more expensive log-det term is embedded into the estimation process. The

second step (of the NORTHSTAR algorithm) uses the upper bound on the spatial autocorrelation

parameter, found in the first step, to narrow the search space and to decrease the number of

determinant evaluations of a large matrix.

The pseudocode of the NORTHSTAR algorithm is given in Figure 6, where GSS stands

for golden section search. Instead of the golden section search, which is not dependent to the

derivative of the optimized function, a derivative-based search algorithm can be used for faster

convergence to the optimal SAR parameter �, but it is necessary to compute the inverse of a

large matrix (I� �W), which is as costly as the determinant computation of a large matrix.
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Input: (�start,tol, W)

Output: (�opt; �opt; �
2

opt)

Steps:

1. Step (i) f

2. �init�est=GSS(range = [0; 1℄,

3. start = f�startg,

4. floglike = SSE) g

5. Step (ii) f

6. �opt=GSS(range = [0; �init�est℄,
7. start = f�init�estg,

8. floglike = �2
n

� ln jI� �Wj+ SSE)

9. Compute (�opt; �
2

opt) g

10. return (�opt; �opt; �
2

opt)

Fig. 6. The NORTHSTAR algorithm.

B. Design Decisions

The design decisions for the NORTHSTAR algorithm consist of choosing, the range of the

SAR autocorrelation parameter � and neighborhood structure, (i.e., sparse vs. dense neighborhood

matrix).

1) The Range of SAR Autocorrelation Parameter �: The range of the � parameter affects

the performances of the SAR algorithms since it determines the search space of the algorithm.

Lemmas 3.1 and 3.2 helps in the optimization of the SAR model parameters by ensuring that

the SAR parameter � will be between a -1 and 1 interval , thereby reducing the search space of

the SAR parameter �.

Lemma 3.1: Neighborhood matrix W has real eigenvalues, regardless of the neighborhood

topology, as long as the neighborhood relation is symmetric (i.e. if i is a neighbor of j, then j

is a neighbor of i).

Proof: Let A be the adjacency matrix for the neighborhood graph for a domain: aij = 1 if

and only if nodes i and j are neighbors (i.e. are correlated). All other off-diagonal entries and

all the diagonal entries are all zero.
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The matrix W is obtained by scaling the rows of A so that the entries in each row of W

add up to one. That means that W = DA for some diagonal scaling matrix D. The matrix D

is not only diagonal, but all the diagonal entries are strictly positive (because every node has

at least one neighbor). Hence the square root of D is well-defined, and so is the inverse of D.

So it can be seen that W is diagonally similar to a symmetric matrix and hence must have real

eigenvalues. Specifically, D�1=2WD+1=2 = D+1=2AD+1=2 and it is symmetric and similar to

W.

Lemma 3.2: The eigenvalues of the row-stochastic (i.e., row-normalized, row-standardized

or Markov) neighborhood matrix W are in the range [�1;+1℄ (see also Theorem 5.3 in x2.5 on

page 49 of [4], x5.13.3 in [27]).

Proof: All eigenvalues of a row-stochastic matrix is bounded by 1 in absolute value by

Perron-Frobenius theorem (please see page 32 of [4] and page 120 of [10]).

It is also possible to put bounds on SAR autocorrelation parameter �. In this study, we used

one of the terms of the log-likelihood function of the SAR model to define an upper bound on

the SAR autocorrelation parameter �.

2) Neighborhood Structure: Neighborhood matrices are used to model the spatial depen-

dencies of given objects. Matrices can be constructed on regular or irregular grid spaces (Ap-

pendix I). Although it is possible to use neighborhood structures on irregular grid space on the

NORTHSTAR algorithm, in this study, we used a two-dimensional regular grid space with a four-

neighborhood. We also compared the performances of the algorithm for different neighborhood

structures.

The use of sparse or dense representation of the neighborhood matrices affects the execution

time very much since the dense LU factorization (decomposition) which is used to find the deter-

minant of a matrix requires n3 operations while the sparse version needs only 2nbubl operations

[13], [16], where bu and bl correspond to the upper and lower bandwidths of the neighborhood

matrix W respectively. In this study, we used sparse representation of neighborhood matrices.

IV. ANALYSIS OF THE NORTHSTAR ALGORITHM

A. Is NORTHSTAR correct?

In this section, we show that the SAR log-likelihood function, given in (1), is unimodular by

developing SAR Unimodularity Theorem 4.1. We also show that SAR autocorrelation parameter
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� (�init�est), minimizing the SSE term is an upper bound of SAR autocorrelation parameter �

minimizing the log-likelihood function by developing Lemma 4.3.

Lemmas 3.1 and 3.2, described in the previous section, helps reduce the search space of the

SAR parameter � into the interval of [-1,+1]. Based on Lemmas 3.1 and 3.2, we describe two

Lemmas (Lemma 4.1 and Lemma 4.2). These lemmas define a function f(x) which has a form

similar to that of the exponential of SAR log-likelihood function and prove that there is only

one zero of such a function in the interval of (-1,+1). Then, using Lemma 4.1 and Lemma 4.2,

a SAR Unimodularity Theorem is developed which shows that the SAR log-likelihood function

has at most one zero within the interval of (-1,+1).

Lemma 4.1: Let

f(x) =
p(x)

q(x)n=2
;

where p(x) is a polynomial of degree n with all real distinct zeroes r1 < : : : < rn outside the

open interval (�1; 1), and q(x) is a polynomial of degree 2 that is positive for all real x. Then

f 0(x) has exactly one zero in each open interval (ri; ri+1), i = 1; : : : ; n� 1. In particular, f 0(x)

has at most one zero in the interval (�1; 1), and hence f(x) is unimodular in (�1; 1).
Proof: By a straightforward computation, the derivative of f is

f 0(x) =
p0q � n

2
pq0

qn=2+1
=

N(x)

D(x)
:

N(x) is a polynomial of degree at most n+1. For polynomials, p(x) = �nx
n+�n�1x

n�1+� � �+�0,

and q(x) = �2x
2 + �1 + �0 the polynomial N(x) = p0q � n

2
pq0 = 
n+1x

n+1 + 
nx
n + � � � + 
0,

we have that the leading coefficient is 
n+1 = n�n � �2��n � n22�2 = 0: Hence N(x) is actually

a polynomial of degree at most n.

Now we localize the n zeroes of the polynomial N(x). At each point ri, N(ri) = p0(ri)q(ri) 6=
0 has the same sign as p0(ri) 6= 0, for i = 1; : : : ; n. Since the zeroes of p(x) are distinct, the

signs of p0(ri) alternate, hence so do the signs of N(ri). Thus, polynomial N(x) must have

at least one zero in each open interval (ri; ri+1), for i = 1; : : : ; n � 1. Call these zeroes si,

i = 1; : : : ; n�1. This accounts for n�1 zeroes, leaving only one left. Denote this one left over

zero s�.

Because all the 
’s are real, s� must be real. Within each interval (ri; ri+1), there must be an

odd number of zeroes due to the sign changes, but we have only one zero left over, so the extra

zero s� must satisfy either s� < r1 or s� > rn.
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Since no ri is in the interval (�1; 1), f 0(x) can have at most one zero within (�1; 1).

Next, we extend Lemma 4.1 by taking the zero eigenvalues of the neighborhood matrix W

into account, which gives us Lemma 4.2.

Lemma 4.2: Let

f(x) =
p(x)

q(x)n=2
;

where p(x) is a polynomial of degree d � n with all real zeroes r1 � : : : � rd outside the open

interval (�1; 1), and q(x) is a polynomial of degree 2 that is positive for all real x. Then either

f(x) is unimodular in (�1; 1) or there is a unimodular function arbitrarily close to f .

Proof: Let � be chosen arbitrarily such that 0 < � < 1
2
, and let �j , j = 1; 2; : : : be

arbitrarily distinct but small numbers such that j�jj < � for all j and �j > 0 for j > d. Write

p(x) = �d(x�r1) � � � (x�rd). Define the n-th degree polynomial ~p(x) = �d(x�r1+�1) � � � (x�
rd + �d)(1 � �d+1x) � � � (1 � �nx) to be a “slight” perturbation of p(x). Define ~f(x) = ~p(x)

q(x)n=2
:

The function ~f(x) satisfies Lemma 4.1, so is unimodular in (�1; 1).
By construction, j~p(x)� p(x)j < � � je(x)j where e(x) is some polynomial of degree n in x,

independent of � (we are using the fact that � < 1
2
). Hence in the interval (�1; 1)

j ~f(x)� f(x)j < � � maxx2(�1;1) je(x)j
minx2(�1;1) q(x)n=2

:

Due to the Lemma 4.2, function f(x) cannot have two distinct maxima in the open interval

(�1; 1), because one would not be able to find a unimodular function arbitrarily close to it,

unless function f(x) is constant.

Theorem 4.1: SAR Unimodularity Theorem: The log-likelihood function `(�jy) as a function

of � is unimodular for � 2 (�1; 1).
Proof: As the exponential of log-likelihood function `(�jy) has the same form of function

f(x) defined in Lemma 4.2, it directly follows that SAR likelihood function `(�jy) is unimodular.

Since the log-likelihood function `(�jy) is unimodular, the golden section search algorithm

always finds the global minimum of the log-likelihood function. Thus, we have an optimal

parameter estimation for the ML-based SAR model solutions. We plotted the SAR log-likelihood

function `(�jy) in order to see its extrema for a problem size of 2500 in Figure 7. As can be
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Fig. 7. The components of the log-likelihood function for a thematic class of satellite dataset with 2500 observation points

and the log-likelihood function = log-det + SSE. ”rho” stands for the SAR parameter �.

seen, the SAR log-likelihood function is unimodular and its components log-det and SSE terms

are also unimodular.

Lemma 4.3: The initial estimate of the � parameter (�init�est), calculated using the SSE term

of the log-likelihood function `(�jy), in the first step (step(i)) of NORTHSTAR is an upper

limit on the location of autocorrelation parameter � optimizing the SAR log-likelihood function

`(�jy).
Proof: For most of the data mining problems of interest, spatial autoregression parameter

� is in the interval [0,1], i.e. 0 < � < 1.

Let us assume that functions f1 and f2 are unimodular, have minimas in the interval [-1,+1] and

that the minima of f1 is less than or equal to the minima of f2 such that minima(f1) � minima(f2).

In that case, function f1+f2 will also be unimodular and will have a minima between the minima

of f1 and f2 such that minima(f1)� minima(f1+f2) � minima(f2).

Since the log-likelihood function `(�jy) is unimodular and both the log-det and SSE terms

are also unimodular, the minima of the log-likelihood function `(�jy) is between the minimas

of the log-det term and the SSE term. We need to prove that the minima of the log-det term is

less than or equal to the minima of the SSE term and the minima of the SSE term is an upper

bound for the log-likelihood function.
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For a given 0 � � � 1, and neighborhood matrix W with K symmetric pairs,

log-det = ln jI� �Wj = K ln(1� �2) (3)

To find the minima of the log-det term, we need to find the derivation of the log-det term and

to set the derivation at 0.

d(log-det)

d(�)
=
�2�K
1� �2

(4)

then � = 0, which is the minima of the log-det term.

In that case, the minima of the SSE term will be greater than or equal to the actual � value

and 0 (which is the minima of the log-det term) and also it gives the upper bound on the �

value, such that minima(SSE) � minima(`(�jy)) � minima(log-det term).

Figure 7 shows the SAR autocorrelation parameter � values which are minimizing the log-det

term, SSE term and log-likelihood function `(�jy). It can be seen that both the log-det and SSE

terms are unimodular in the open interval (-1,+1). Thus, the minima of the likelihood function

`(�jy) is between the minima of the log-det term and the minima of the SSE term. It can also

be seen from Figure 7 that the value of the minima of the log-det term is less that the value

of the minima of the SSE term. This observation shows that the minima of the SSE term is an

upper bound of the minima of the sum of the SSE and the log-det term (The sum of both the

terms is the log-likelihood function `(�jy) as given in (1)).

B. How Computationally Expensive is the Proposed Algorithm-NORTHSTAR?

In this section, we show that the magnitude of the log-det term of the SAR log-likelihood

function, given in (1), is very small with respect to the magnitude of the SSE term of the SAR log-

likelihood function `(�jy) by developing the Relative Magnitude Observation (Observation 4.1).

The algorithms in the previous studies calculate the optimum SAR parameters using the log-det

and SSE terms in the estimation procedure at the same time. It is observed that if the magnitude

of the SSE term is bigger enough than the magnitude of the log-det term, it is possible that

the effect of the log-det term in the calculations will be dominated by the magnitude of the

SSE term, especially when the problem size is big. In such cases, the SSE term itself may be
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enough to find optimal � parameter and there may be no need to include the log-det term in

the SAR parameter estimation process. The NORTHSTAR algorithm is designed based on this

observation and described in Lemma 4.4. In the first step of the NORTHSTAR, the SSE term

is used to find the optimal � parameter; if the desired precision of the optimal � parameter is

not enough, a second step is required. In the second step, the log-det term is included in the

estimation procedure and optimal � parameter, found in the fist step, is used as an upper bound

on optimum SAR autoroccelation parameter �.

Observation 4.1: Relative Magnitude Observation: The log-det term of the SAR log-likelihood

function `(�jy), given in (1), is very small in magnitude with respect to the magnitude of the

SSE term of the log-likelihood function.

Proof: The magnitude (absolute value) of the log-det term of the log-likelihood function

given in (5) is a function of the � parameter and � < 1.

abs(log-det term) = abs

��2
n

ln jI� �Wj
�

= abs

 
�2
n

nX
i=1

ln(1� ��i)

!
� abs (�2 ln(1 + �))

(5)

It can be seen that the magnitude of the log-det term is determined by the value of the �

value. In the extreme case, � can be maximum 1 and the value of equation given in (5) can be

approximately 1.4.

In contrast, the magnitude (absolute value) of the SSE term of the log-likelihood function

`(�jy) is a function of problem size n, values of the eigenvalues and dependent vector y as can

be seen in (6).

abs(SSE term) = abs
�
ln((I� �W)y)T (I�M)T (I�M) ((I� �W)y)

�
= abs

�
ln(yTA y)

�
= n � E[�i(y

2
1 + :::+ y2n)℄ (6)

where M = x(xTx)�1xT , A = ((I � �W)T (I �M)T (I �M)(I � �W). E[.] represents the

expected value, which is the average of the all eigenvalues in ( 6).

It can be seen that the magnitude of the SSE term is much bigger than the magnitude of the

log-det term (i.e. (SSE term) � (log-det term)), especially when the problem size is big and the

norm of the dependent vector y is big.
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Details of the proof can be seen in Appendix V.

Table II shows the magnitudes of the log-det and SSE terms at the optimal � value where

log-likelihood function `(�jy) is minimum for different neighborhood structures.

TABLE II

THE MAGNITUDES OF THE LOG-DET AND SSE TERMS AT THE OPTIMAL � VALUE WHERE THE LOG-LIKELIHOOD FUNCTION

IS MINIMUM

Problem Size(n) Neighborhood �opt abs(Log-likelihood) abs(SSE) abs(log-det)

2500 4-N 0.467 15.185 15.125 0.061

2500 8-N 0.430 15.267 15.238 0.028

Lemma 4.4: Let the � ratio be the ratio of the magnitude of the log-det term and the SSE

term.

� =
abs(max�(log-det term))

abs(minj�j<1(SSE term))

If the � ratio is small enough, there is no need to include the log-det term in the estimation

procedure of the NORTHSTAR algorithm. Recall that the � ratio will be small when the problem

size gets bigger and the norm of y vector is big.

Proof: The Relative Magnitude Observation (Observation 4.1) proves that the magnitude of

the SSE term is much bigger than the magnitude of the log-det term. In the worst case, � will be

close to 1 and the absolute value of the log-det term will be close to 1.4. In contrast, the absolute

value of the SSE term will increase with the increasing problem size and increasing magnitude

of the norm of vector y. In this case, � will be small enough and the effect of the log-det term

will be small, or even negligible, on the log-likelihood function calculation. Because of this

property of the � ratio, it can be used as a stopping criteria of the NORTHSTAR algorithm and

may eliminate the need for numerous computations of the determinant of a large matrix.

This leads to our NORTHSTAR heuristic, which can be defined as follows:

� (i) �init�est = value of approximate � (ignoring log-det term)

� (ii) �opt = value of � approximated in the second step of NORTHSTAR In this step �init�est

is used as an upper bound.

The cost of the NORTHSTAR algorithm is dominated by the sparse LU factorization operation

which is used to calculate determinant of (I��W). The cost of it will be (j�m)(2nbubl)+9n2+
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2j� 3, where m is the savings from the log-det computation when there is no stopping criteria.

When Lemma 4.4 the applied to the algorithm, the cost of the algorithm will be dependent on

the function of the � value, such that (j�f(�))(2nbubl)+9n2+2j�3. It should be noted that the

f(�) value will be close to the m value for small problem sizes. In contrast, f(�) will be close

to j for big problem sizes because of the huge savings from the log-det computation (such that

f(�)� m). The parameters bu and bl correspond to the upper bandwidth and lower bandwidth

of the neighborhood matrix W respectively. The parameter (j � m) is the number of log-det

computations for the NORTHSTAR algorithm. Next, we compare the cost of NORTHSTAR with

the related approaches.

C. How Does NORTHSTAR Cost Compare with Related Approaches?

This section presents the cost-modeling of the exact SAR model solutions. The total computa-

tional complexity (the operation counts) of our NORTHSTAR heuristic is listed in Figure 8 and

it should be noted that j � n. The eigenvalue computation based SAR model solution cannot go

beyond problem sizes of 10K due to memory constraints. The parameters bu and bl correspond

to the upper and lower bandwidths of the neighborhood matrix W respectively. The first terms

of the NORTHSTAR and SLD cost functions ( (j � f(�))(2nbubl) and j(2nbubl) + 9n2 + j),

respectively ) are the costs of the sparse LU factorization which needs to be calculated for each

� until it reaches its optimum value �opt. The rest of the cost functions of the NORTHSTAR and

SLD algorithms are the costs of sparse matrix-vector multiplication of the GSS algorithm. The

first term of the cost function of the EV is dense LU factorization and the rest is the dense matrix-

vector multiplication of the GSS algorithm. The EV-based approach is more expensive than the

others because of the dense LU factorization (n3 operation). The NORTHSTAR algorithm is

more efficient than the SLD algorithm, since it decreases the number of computations of sparse

LU factorization.f(�) represents the savings from the log-det computation.

Thus, for large problem sizes, NORTHSTAR is much more computationally efficient than the

SLD and EV-based approaches.

V. EXPERIMENTAL EVALUATION

We compared the NORTHSTAR algorithm with the EV-based, and SLD-based solutions using

real and synthetic datasets to estimate SAR model parameters. It should be noted that the
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Problem Size NORTHSTAR EV-based Approach SLD-based Approach

n (j � f(�))(2nbubl) + 9n2 + 2j � 3 2
3
n3 + 529n2 + j j(2nbubl) + 9n2 + j

Fig. 8. The total computational complexity (the operation counts) of our NORTHSTAR heuristics with respect to the previous

exact SAR model implementations. The variable f(�) is the number of savings from log-det computations. ”SLD” stands for

the straight log-det approach and ”EV” stands for the eigenvalue approach.

algorithms give the same SAR parameter estimates since all of them are the exact SAR model

solution.

A. Experimental Design and System Setup

We conducted experiments to answer the following questions:

� What is the execution time and memory usage of the proposed algorithm?

� What is the effect of the value of the SAR parameter � on the NORTHSTAR algorithm?

What is the behavior of the NORTHSTAR algorithm for varying � parameters? How does

the precision of the predicted � parameter affect the savings from log-det?

� What is the behavior of the NORTHSTAR algorithm for different problem sizes?

� What is the behavior of the NORTHSTAR algorithm for different neighborhood structures?

� What is the effect of the � ratio over log-det savings?

The control parameters for the experiments are summarized in Table III. Notable solutions for

the SAR model have been implemented in Matlab [25]. The system setup of the experiments is

shown in Figure 9.

B. Datasets

1) Real datasets: We used real datasets from ecology and satellite remote-sensing image data

in order to evaluate the SAR model solutions.

The ecology data is used to predict bird nest locations, as explained in Section I.A.

The satellite remote-sensing data is used for thematic classification. The study site encompasses

Carlton County, Minnesota, which is approximately 20 miles southwest of Duluth, Minnesota.

The region is predominantly forested, composed mostly of upland hardwoods and low-land

conifers. There is a scattering of agriculture throughout. The topography is relatively flat, with
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TABLE III

THE EXPERIMENTAL DESIGN

Factor Name Parameter Domain

Problem Size (n) 100, 400, 900, 1600, 2500, 10,000, 160,000 and 1,000,000

observation points

Neighborhood 2-D with 4-neighbors, 8-neighbors, and 12-neighbors

Structure

Candidates Eigenvalue Based Approach, Straight Log-det Based Ap-

proach, and NORTHSTAR

SAR Parameter � [0,1)

Optimization Non-derivative Based Optimization

Dataset Real and Synthetic Datasets

Hardware IBM Regatta and IBM Netfinity Linux Cluster

the exception of the eastern portion of the county containing the St. Louis River. Wetlands,

both forested and non-forested, are common throughout the area. The largest city in the area is

Cloquet, a town of about 10,000. For this study we used a spring Landsat 7 scene, taken May

31, 2000. This scene was clipped to the Carlton County boundaries, which resulted in an image

of size 1343 lines by 2043 pixels and 6-bands. Out of this we took a subset image of 1200 by

1800 to eliminate boundary zero-valued pixels. This translates to a W matrix of size 2.1 million

x 2.1 million (2.1M x 2.1M) points. The observed variable x is a matrix of size 2.1M by 6. We

chose nine thematic classes for the classification.

In thematic classification, the goal is to categorize the pixels of satellite images into classes

(e.g., water, urban, rural, forest,...) based upon the values of the ”spectral signatures” recorded

by receivers on board the satellite. The problem of thematic classification has deep spatial

connections because in most instances, pixels, which are neighbors on the image, belong to the

same class. Thus satellite images naturally exhibit high spatial autocorrelation if pixel sizes are

smaller than the size of spatial features.

2) Synthetic dataset generation: Synthetic datasets were generated using standard normal

distribution with unit standard deviation and zero mean for different problem sizes, such as

n=100, 400, 900, 1600, 2500 and for different � parameters, such as �=0.1, 0.2, 0.3, ..., 0.9.

Observation variable n-by-k x and unobservable error n-by-1 � were generated using standard
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Fig. 9. The flow diagram for experiments

normal distribution for k=5 explanatory variables. Regression coefficients k-by-1 � vector were

taken as one vector. Using these parameters, dependent variable y was generated for different

problem sizes and � parameters.

C. Experimental Results

1) Scalability and memory usage of the algorithms: We compared the execution time and

memory usage of the EV-based, SLD-based, and NORTHSTAR algorithms for different problem

sizes using the real dataset.

Results showed that the NORTHSTAR algorithm is faster than EV-based and SLD-based

approaches, especially when the problem size is increased, because of the log-det savings of the

NORTHSTAR algorithm (Table IV).

The memory usage of the SLD-based and NORTHSTAR algorithms is very low due to the

sparse representation of the neighborhood matrix W as a sparse matrix (Table IV). However,

this is not possible for the EV-based approach since it has to use the dense representation of the

matrix. Results showed that NORTHSTAR is the most scalable algorithm among the exact SAR

model solutions, when execution time and memory usage are considered.

Since the execution time and memory usage of the EV-based approach is too high, we

compared only the SLD-based and NORTHSTAR algorithms in the rest of the experiments.
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TABLE IV

THE EXECUTION TIME AND MEMORY USAGE

Problem Size(n) Execution Time

EV-based App. SLD-based App. NORTHSTAR

400x400 (160,000) Intractable 32 minutes 24 minutes

1000x1000 (1,000,000) Intractable 72 hours 45 hours

Problem Size(n) Memory (MB)

Exact EV Exact SLD NORTHSTAR

50x50 (2,500) 50 1 1

100x100 (10,000) 2400 4.5 4.5

400x400 (160,000) � 6:14 � 105 70 70

1000x1000 (1,000,000) � 8 � 106 450 450

2) Effect of the SAR parameter �: We conducted experiments to characterize the behavior of

the NORTHSTAR algorithm for varying desired precision and varying values of the � parameter.

Effect of the desired precision of the � parameter: We examined the effect of the desired

precision of the � parameter for problem size 2500 of the SLD and NORTHSTAR algorithms. We

used the real dataset (e.g., satellite remote-sensing dataset) and an optimum SAR autocorrelation

parameter � of 4:7293 � 10�1 for this dataset. In the stage (ii) of the NORTHSTAR algorithm

set the starting point for searching optimal � value as
(2��init�est)

3
. It is observed that when the

precision decreased, the savings from the log-det computation of the NORTHSTAR increases

(Figure 10).

Effect of value of � parameter: We conducted experiments to determine the behavior of the

NORTHSTAR algorithm and compared the log-det savings of the SLD-based and NORTHSTAR

algorithms for various � parameters. Synthetic datasets were produced using standard normal

distribution for different � parameters for the fixed problem size 2500. For each � parameter,

experiments were conducted 10 times and the number of log-det savings in Figure 11 shows

the average of these 10 runs. Results showed that if the value of the spatial autocorrelation

parameter � is low, NORTHSTAR algorithm outperforms SLD-based approach and if it is high,

there may be no significant savings from the log-det computation (Figure 11). It is a fact that

when the � parameter is close to 1 (which is the theoretical upper bound), the upper bound on
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Fig. 12. Effect of problem size

the SAR autocorrelation parameter found in the first step of the NORTHSTAR will be close to

1 (Figure 11) and will have no significant effect to limit the search space of the second step

of the NORTHSTAR algorithm. In such a case, NORTHSTAR will behave like the SLD-based

approach. For SLD-based approach, the bound of the � parameter is [0,1]. For the NORTHSTAR

algorithm the bound of the � parameter in stage(i) is [0,1] and in stage(ii) [0,�init] (�init is the

result of the stage(i)).

3) Effect of problem size: : We conducted experiments to see the behavior of the NORTH-

STAR algorithm for different problem sizes and compared it with SLD-based approach algorithm.

In the experiments, synthetic dataset are used for problem sizes 100, 400, 800, 1600, and
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Fig. 13. 2-D regular grid space and

neighborhoods of the center cell

Fig. 14. Effect of different neighborhood structures

2500. Datasets are produced using standard normal distribution for a fixed SAR autocorrelation

parameter � such that 0.3. Experiments showed that NORTHSTAR outperforms SLD-based

approach and the number of log-det computation is constant with the increasing problem size

for SLD-based approach and NORTHSTAR (Figure 12). Since each log-det computation will be

costly, constant saving will be valuable, especially, with the increasing problem size.

4) Effect of neighborhood structure: : We conducted experiments using different neighborhood

structures to determine behavior of NORTHSTAR algorithm. Real dataset is used for problem

size 2500. 4-neighbors, 8-neighbors, and 12-neighbors structures are used for 2-D regular grid

space (Figure 13). For the 2-D regular grid space, the 4-neighbors of a cell (center cell in Figure

13) can be defined as the cells which are found on four direction of it, such as the North (N),

South (S), East (E), and West (W). For the 2-D regular grid space, the 8-neighbors of a cell

(center cell in Figure 13) can be defined as the cell which are found on eight directions of it,

such as N, NW, W, SW, S, SE, E, and NE. For the 2-D regular grid space, the 12-neighbors

include second North (N2), second West (W2), second (E2), and second South (S2) cells in

addition to the 8-neighbors cells.

Experiments showed that when the neighborhood structure increased number of log-det compu-

tation of SLD does not change, although number of the log-det computation of the NORTHSTAR

algorithm decreases.

5) Effect of � Ratio: Experiments showed that if the magnitude of the log-det term is less

than or equal to 1
60

of the magnitude of the SSE term computed in step(i) of NORTHSTAR, then
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the � value that our NORTHSTAR heuristic finds in its step (i) is within the �0:1 range of the

optimal � value. In other words, if the desired precision is �0:1, one would not need to run the

second step of NORTHSTAR, where we compute the computationally expensive log-det term.

VI. CONCLUSIONS AND FUTURE WORK

Linear regression is one of the best-known classical data mining techniques. However, it makes

the assumption of independent identical distribution (i.i.d.) in learning data samples, which does

not work well for geo-spatial data, which is often characterized by spatial autocorrelation. In

the SAR model, spatial dependencies within data are taken care of by the autocorrelation term,

and the linear regression model thus becomes a spatial autoregression model. Incorporating

the autocorrelation term enables better prediction accuracy. However, computational complexity

increases due to the need for computing the determinant of a large matrix (I� �W).

The related work computes determinant term of a large matrix of SAR model solution repeat-

edly to determine optimum values of SAR parameters, namely, autocorrelation parameter and

weights for explanatory variables.

Since the determinant computation of a large matrix is computationally expensive, we devel-

oped a faster, scalable and novel prediction and estimation technique for an exact SAR model

solution (NORTHSTAR) which is based on sparse LU decomposition and aims to recude the

number of determinant computation of a very large matrix . This yields to reduce computation

cost of the SAR parameter estimation process. The key idea is narrow the search interval by a

cheap computation yielding an upper bound on the spatial autocorrelation parameter (Lemma

4.3). In the paper we proved that both terms of the ML-based SAR model solution (determinant

term and SSE term) are unimodular and contains SAR autocorrelation term (Theorem 4.1). In

addition, the location of autocorrelation parameter minimizing the SSE term of ML function is

an upper bound on the location of autocorrelation parameter optimizing the likelihood function

(Lemma 4.3). This upper bound allows us to narrow the search interval and reduce the number

of iterations and number of determinant evaluations of an iterative search to estimate the spatial

autocorrelation parameter of SAR model.

Analytical and Experimental evaluations showed that our approach is computationally more

efficient than related work. We analyzed that the evaluation of the SSE term of ML function

gives an upper bound on autocorrelation parameter of the likelihood function by using SAR
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Unimodularity Theorem 4.1 and Lemma 4.3. Experimental results show that the computational

cost of proposed approach is usually smaller than the of related approaches. The experiments

show that proposed approach is computationally more efficient than related approaches in terms

of execution time and memory usage. The experiments show that when the value of autocorrela-

tion parameter gets smaller, the advantage of the proposed approach increases. It is also observed

that determinant computation saving increases for the bigger neighborhood structures.

We have two main items for future work:

1) Regarding bounds on the parameter �, we will investigate ways to eliminate computing

some of the eigenvalues to reach very high problem sizes with the eigenvalue approach.

2) We plan to reduce the bandwidth of the W matrix for big neighborhood structures. This

will help us obtain a more efficient solution for all eigenvalues using sparse matrix algebra.
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APPENDIX I

CONSTRUCTING NEIGHBORHOOD MATRIX

A. Constructing Neighborhood Matrix (W) on Regular (Uniform) Grid Space.

Several previous studies have shown that modeling of spatial dependency during the predic-

tion and classification process improves overall prediction and classification accuracy. Spatial

dependency can be defined by the relationship between spatially adjacent pixels in a small

neighborhood. The spatial relationship among locations in a spatial framework is often mod-

eled via a neighborhood (contiguity) matrix. A simple neighborhood matrix may represent the

neighborhood relationship defined using adjacency, Euclidean distance, etc. Example definitions

of neighborhood using adjacency include 2-neighborhood on 1-dimensional grid space and 4-

neighborhood, 8-neighborhood, 12-neighborhood and so on neighborhood on 2-dimensional grid

space. This structure is also known as regular square tessellation 1-dimensional and 2-dimensional

planar surface partitioning [17]. One can use Moran’s I index in order to see whether there is

significant spatial dependency in the given dataset (attributes). Appendix II summarizes Moran’s

I index computation.

The rows (neighboring values) of neighborhood matrix W sum to 1, which means that W is

row-standardized i.e., row-normalized or row-stochastic. A non-zero entry in the jth column of

the ith row indicates that the jth observation will be used to adjust the prediction of the ith row

where i is not equal to j.

To form the row-normalized neighborhood matrix W, first a non-normalized neighborhood

matrix C formed by putting putting ”1”s for neighborhoods of (i; j)th pixel of the spatial

framework and by putting zeros for the rest of the entries. Then, non-zero row elements of

C matrix are divided by each row sum of it. The algebraic equivalent of this definition can be

formulized as W = D�1C where D is a diagonal matrix whose diagonal elements contains row

sums of matrix C and the rest of the elements of the D matrix is zero, that is dii =
Pn

i=1 
ij

and dij = 0. In other words, W matrix is formed by dividing non-zero elements of C by

corresponding diagonal element of D.

Next, illustration of the neighborhood matrix formation on 4-by-4 regular grid space using

4-neighborhood spatial relationships is discussed.
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1) Illustration of the Neighborhood Matrix Formation on a 4-by-4 Regular Grid Space:

Spatial dependency can be defined by the relationships among spatially adjacent pixels in a

small neighborhood within a spatial framework that is a regular grid space. Given a gridded

spatial framework, the 4-neighborhood assumes that a pair of locations influence each other if

they share an edge.

For the 4-neighborhood case, the neighbors of the (i; j)th pixel of the regular grid are the

pixels which are found NORTH, SOUTH, EAST, and WEST side of it as shown in Figure 15.

neighbors(i; j) =

8>>>>><
>>>>>:

(i� 1; j) 2 � i � �, 1 � j � q NORTH

(i; j + 1) 1 � i � �, 1 � j � q � 1 EAST

(i+ 1; j) 2 � i � �� 1, 1 � j � q SOUTH

(i; j � 1) 1 � i � �, 2 � j � q WEST

Fig. 15. The four neighbors of the (i; j)th pixel on the regular grid.

Using this 4-neighborhood definition the non-row-normalized spatial neighborhood matrix C

of the 4-by-4 spatial framework given in Figure 16 can be formed as shown in Figure 17(a). For

example, the neighbors of pixel 6 of the spatial framework is represented in the 6th row of the

non-row-normalized neighborhood matrix C (Figure 17(a)) and the neighbors of the other pixels

are represented in that fashion. The 2nd, 5th, 7th, and 10th columns of the 6th row contains

value ”1” since the neighbors of the pixel 6 are pixels 2 (NORTH), 5 (EAST), 7 (WEST), and

10 (SOUTH) in the spatial framework.

The row-normalized neighborhood matrixW (Figure 17(b)) is formed by dividing neighboring

values by the row sums of the C matrix. For example, the 6th row of the C is divided by 4

which is row sum of it.

B. Constructing the Neighborhood Matrix W on Irregular Grid Space

Spatial statistics requires some means of specifying the spatial dependence among observations

[17]. The neighborhood matrix i.e., W, spatial weight matrix fulfills this role for lattice models

[5], [6] and can be formed on both regular and irregular grid. This section shows a way to form

the neighborhood matrix on the irregular grid space which is based on Delaunay triangulation



34

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 16. The spatial framework which is 4-by-4 where rows may or may not be equal to columns.

 
(a)               (b) 

Fig. 17. (a) The 4�4-by-4�4 non-row-normalized neighborhood matrix C with 4 nearest neighbors. (b) The row-normalized

version i.e. W which is also 4� 4-by-4� 4. The product 4� 4 is equal to 16, the problem size n.

algorithm [34], [35]. [36] describes another method of forming the neighborhood matrix on

the irregular grid which is based on nearest neighbors. One specification of the spatial weight

matrix begins by forming the binary adjacency matrix N where Nij = 1 when observation j is a

neighbor to observation i (i 6= j). The neighborhood can be defined using computationally very

expensive Delaunay triangulation algorithm [25]. These elements may be further weighted to give

closer neighbors higher weights and incorporate whatever spatial information the user desires.

By itself, N is usually asymmetric. To insure symmetry, we can rely on the transformation

C =
�
N+NT

�
=2. The rest of forming neighborhood matrix on irregular grid follows the same
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Fig. 18. Summary of formation of W matrix.

procedure discussed in the preceding section. Users often re-weight the adjacency matrix to create

a row-normalized i.e., row-stochastic matrix or a matrix similar to a row-stochastic matrix. This

can be accomplished in the following way: Let D represent a diagonal matrix whose ith diagonal

entry is the row-sum of the ith row of matrix C. The matrix W = D�1=2D�1=2C = D�1C is

row-stochastic where D�1=2 is a diagonal such that its ith entry is the inverse of the square

root of the ith row of matrix C. Note that the eigenvalues of the matrix W do not exceed 1

in absolute value, and the maximum eigenvalue equals 1 via the properties of row-stochastic

matrices (see Lemmas 3.2 and 3.1 and Figure 18 in this study, x5.13.3 in [27]).

From a statistical perspective, one can viewW as a spatial averaging operator. Given the vector

y, the row-stochastic normalization i.e., Wy results in a form of local average or smoothing of

y. In this context, one can view elements in the rows of W as the coefficients of a linear filter.

(See [3], [34], [35], [36] for more information on spatial weight matrices.)
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APPENDIX II

MORAN’S I INDEX: QUANTIFYING THE AUTOCORRELATION IN DATASETS

Spatial autocorrelation analysis tests whether the observed value of a variable at one locality

is independent of the values of the variable at neighboring localities. If a dependence exists, the

variable is said to exhibit spatial autocorrelation. Spatial autocorrelation measures the level of in-

terdependence between the variables, and the nature and strength of that interdependence. It may

be classified as either positive or negative. In a positive case all similar values appear together,

while a negative spatial autocorrelation has dissimilar values appearing in close association [23].

I =
n

S0

Pn
i=1

Pn
j=1(wij(xi � �x)(xj � �x))Pn

i=1(xi � �x)2
(7)

The term S0 is equal to
Pn

i=1

Pn
j=1wij and n is the problem size.
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APPENDIX III

SIMPLE OVERVIEW OF LOG-LIKELIHOOD THEORY

We simply define the likelihood function in this section. Let Y = (Y1; Y2; :::; Yn) be a

random vector. and define a statistical model ffY(yj�) : � 2 �g which is parameterized by

� = (�1; :::; �n), the parameter vector in the parameter space �. The likelihood function is the

mapping defined as L : �! [0; 1℄ � R given in (8).

L(�jy) = fY(yj�) (8)

In other words, the likelihood function is functionally the same in form as a probability density

function (pdf). However, the emphasis is changed from y to �. The pdf is a function of the y’s

while holding the parameters �’s constant, L is a function of the parameters �’s, while holding the

y’s constant. We can abbreviate L(�jy) to L(�). The parameter vector �̂ such that L(�̂) � L(�)

for all � 2 � is called maximum likelihood estimate, or MLE, of �. Many of the density functions

are exponential in nature, therefore it is easier to compute the MLE of a likelihood function L

by finding the maximum of the natural log of L, known as the log-likelihood function defined

in in (9) due to the monotonicity of the log function. Finding maximum of a function is carried

by taking the first derivative of that function and finding the values of parameters which equate

the derivative to zero.

`(�jy) = ln(L(�jy)) (9)
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APPENDIX IV

BASIC LINEAR ALGEBRA FACTS

This appendix section presents the basic linear algebra equalities [7] used in our proofs.

� A real n-by-n matrix A is called a Markov matrix, or row-stochastic matrix if:

1) aij � 0 for 1 � i; j � n;

2)
Pn

j=1 aij = 1 for 1 � i � n.

� If A is a Markov matrix, then AJn = Jn where Jn = [1; :::; 1℄T . So, 1 is always an

eigenvalue of a Markov matrix.

� If A and B are Markov matrices, then AB is also a Markov matrix.

� tr(A) =
Pn

i=1 aii

�
Pn

i=1 �i = tr(A) and
Qn

i=1 �i = jAj
� If:

1) xTAx > 0 then 8x 6= 0 the matrix A is called positive definite.

2) xTAx � 0 then 8x the matrix A is called positive semi-definite matrix.

� All positive definite matrices are non-singular.

� Eigenvectors of positive semi-definite matrices are non-negative.

� If A2 = A, then matrix A is idempotent.

� All idempotent matrices are positive semi-definite with non-negative diagonal elements since

ATA = AAT = A = A2. Then, xTAx = (Ax)TAx which is just a sum of squares of the

elements of Ax.

� If the square of an idempotent matrix A is non-singular, then that matrix is the identity

matrix. Because: A2 = A then A�1A2 = A�1A which means A = I.

� Eigenvalue of an idempotent matrix is either 0 or 1.

� If A is positive definite (or positive semi-definite) matrix and B is non-singular matrix i.e.,

its determinant is not zero then BTAB is also positive definite (or positive semi-definite)

matrix [7].
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APPENDIX V

PROOF OF OBSERVATION 4.1

Proof: The following are the facts used in this proof:

1) Eigenvalues of a Markov matrix are in the range [�1::1℄.
2) Maximum eigenvalue of a Markov matrix is 1.

3) abs(ln(1 + xy)) < abs(ln(1 + x)), if x and y are between 0 and 1.

4) abs(ln(1 + �)) > abs(ln(1� �)) for small number 0 < � < 1

5) 0 < � < 1 for almost all spatial data mining problems of interest.

Now let us use these facts to rewrite �2
n

Pn
i=1 ln(1���i). Let’s assume that we have a sequence

of sorted n eigenvalues in the descending order and have l positive eigenvalues and n � l � 1

negative eigenvalues. For instance, for 4-neighborhood structure l is n=2 and for 8-neighborhood

case l is less than n=2.

abs

 
�2
n

nX
i=1

ln(1� ��i)

!
= abs

 
�2
n

 
lX

i=1

ln(1� � abs(�i)) +

nX
i=l+1

ln(1 + � abs(�i))

!!

� abs

 
�2
n

nX
i=1

ln(1 + � abs(�i))

!
due to 4

� abs

 
�2
n

nX
i=1

ln(1 + �)

!
due to 3

� abs

��2n
n

ln(1 + �)

�
� abs (�2 ln(1 + �)) due to 5 (10)

The quantity given in (10) is small as long as � < 1. Now, let’s work on the SSE term and show

that (SSE)� (log-det).

We will review eigenvectors of symmetric matrices [8] since our matrix (I��W)T (I�M)(I�
�W) is a symmetric matrix which we represent by matrix A.

Suppose A 2 Rnxn is symmetric, i.e., A = AT . It is the fact that the eigenvalues of the

matrix A are real. To see this, suppose Av = �v, where v 6= 0. Then, �vTAv = ��vTv =

�
Pn

i=1 (abs (vi))
2 But also �vTAv = �Av

T
v = ��

Pn
i=1 (abs (vi))

2. So, we have � = ��, i.e.,

� 2 R and we can safely assume that v 2 Rn.

It is the most important fact that there is a set of orthonormal eigenvectors of matrix A i.e.,

q1; :::;qn such that Aqi = �iqi;qi
Tqj = Æij which is zero and each eigenvector has unit length
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such that qi
Tqi = 1 or equivalently norm of each eigenvector is 1 jjqijj = 1. In matrix form:

there is an orthogonal Q such that:

Q�1AQ = QTAQ = � (11)

Hence we can express A as:

A = Q�1�Q =

nX
i=1

�iqiqi
T (12)

Suppose the eigenvalues of A are sorted so �1 � ::: � �n. Please note that A represents

(I� �W)T (I�M)(I� �W). Thus,

abs
�
yTAy

�
= abs

�
yTQT�Qy

�
= abs

�
(QTy)T�(QTy)

�
= abs

 
nX

i=1

�i(qi
Ty)2

!

� abs

 
nX

i=1

�iy
Ty

!

= n � E[�iy
Ty℄| {z }

per element SE

= n � E[�i(y
2
1 + :::+ y2n)℄ (13)

where E[.] represents expected value (i.e. average of eigenvalues). In the equation, all eigen-

values greater symmetric positive semi-definite matrix are positive and y2i ’s of an order of

magnitude which makes the natural logarithm of this end-result much greater than the log-det

term.
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APPENDIX VI

DERIVATION OF THE ML (LOG-LIKELIHOOD) FUNCTION

Ordinary least squares are not appropriate to solve for the models given in (2). One way

to solve is to use the ML theory procedure. In probability, there are essentially two classes of

problems: the first is to generate a data sample given a probability distribution and the second

is to estimate the parameters of a probability distribution given data. Obviously in our case, we

are dealing with the latter problem. This derivation not only shows the link between the need

for eigenvalue computation and the SAR model parameter fitting but also explains how the SAR

model works and can be interpreted as an execution trace of the solution for the SAR model.

The end-result will be the log-likelihood function that is used in the optimization of SAR model

parameter estimate �. We presented a simple overview of log-likelihood theory in Appendix III.

We begin the derivation by choosing a SAR model that is given in (2). We can explicitly write

SAR model using its matrix-vector form as follows:

yt = (I� �W)�1(xt1�1 + xt2�2 + :::+ xtk�k + �t) (14)

where t = 1; :::; n is the index for n successive observations. Let us assume that the distur-

bances or error �t is distributed normally, independently and identically with mean E(�) = 0 and

variance �2. The set of n such equations can be compiled as equation (2). Let us assume that

the disturbances �t, which are the elements of the vector � = [�1; :::; �t; :::; �n℄ and are distributed

independently and identically according to a normal distribution as given in (15). Let’s call the

matrix (I� �W) as matrix A to simplify the expressions. Please note that �t = (Ayt � xt:�).

N(�t; 0; �
2) =

1p
2��2

exp

��1
2�2

(Ayt � xt:�)

�
(15)

If the vector � has a multi-variate normal distribution just like in our case, the normal

distribution is then defined as in (16) with a covariance matrix defined as � = �2I. Please

note that j�j�12 = �n, ��1 = 1
�2
I and j�j = j�2Ij = �2n.

N(�t; 0;�
2) = (2�)

�n
2 j�j�12 exp (

�1
2
�Tt �

�1�t)

= (2�)
�n
2 j�j�12 exp

��1
2
(Ayt � xt:�)

T ��1(Ayt � xt:�)

�
(16)
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Then, taking the xt: vectors which forms the rectangular matrix x of size n-by-k as data, the

observations yt (where t = 1; :::; n) have density functions N(yt; (Ayt � xt:�); �
2) which are of

the same form as those of the disturbances, and the likelihood function of � and �2, based on

sample is given in (17) [18]. Thus, the prediction of the SAR model solution heavily depends

on the quality of the normally distributed random numbers generated.

L(�jy) = L((�; �; �2)j(yt; xt:;W)) =

nY
t=1

N(yt; (Ayt � xt:�); �
2)

= N(�; 0;�2)jd�=dyj

= (2�)
�n
2 j�j�12 exp

��1
2
(Ay � x�)T ��1(Ay � x�)

�
jd�=dyj

= (2��2)
�n
2 exp

��1
2
(Ay � x�)T ��1(Ay � x�)

�
jd�=dyj (17)

The Jacobian term jd�=dyj [12], [15] needs to be calculated out in order to find the probability

density function of the variable y, which is given in (18). Please note that � = (Ay � x�) and

the term �
�1
2 (Ay � �) is also known as the vector of homoskedastic random disturbances [2],

[42]. The Jacobian term is equal to the identity matrix I in classical linear regression model [2].

The need for the Jacobian term is formally stated and proved by Theorem 7.1 (Theorem 6.1

in this paper) on pages 232-233 of [15]. We provide the theorem and proof for the reader’s

convenience by converting to our notation.

jd�=dyj = jAj (18)

Theorem 6.1: Let N(�; 0;�2) be the value of the probability density of the continuous random

variable � at �t. Since the function given by y = A�1x� + A�1� is differentiable and either

increasing or decreasing for all values within the range of � for which N(�; 0;�2) 6= 0, then

for these values of �, the equation y = A�1x� + A�1� can be uniquely solved for � to give

� = Ay � x� and the probability density of y is given by:

L(�jy) = N(�; 0;�2)jd�=dyj provided A�1x� +A�1� 6= 0 (19)

Elsewhere, L(�jy) = 0.

Proof: The proof can be found on pages 233-235 of [15].
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L(�jy) = (2��2)
�n
2 exp

��1
2�2

(Ay � x�)T (Ay � x�)
�
jAj (20)

L(�jy) given in (20) will henceforth be referred to as the ”likelihood function of the SAR

model”. It is a probability distribution but now interpreted as a distribution of parameters which

have to be calculated as noted in the Appendix III. Since the log function is monotonic and

the log-likelihood function is unimodular (See SAR Unimodularity Theorem 4.1), we can then

equivalently minimize the log-likelihood function, which has a simpler form and can handle large

numbers. This is because the logarithm is advantageous, since ln(ABC) = ln(A)+ln(B)+ln(C).

After taking the natural logarithm of equation given in (20), we get the log-likelihood function

given in (21).

`(�jy) = lnL(�jy) = �n

2
ln(2�)� n

2
ln(�2) � 1

2�2
(Ay � x�)T (Ay � x�) + ln jAj (21)

The MLE estimators given in (22a) and (22b) are obtained by setting
�`(�jy)
��

and
�`(�jy)
��2

to

zero respectively.

�̂ = (xTx)�1xT Ay (22a)

�̂2 = (Ay)T (I� x(xTx)�1 xT )T (I� x(xTx)�1 xT )(Ay)=n (22b)

Replacing �̂ given in (22a) with � given in (21) and �̂2 given in (22b) with �2 given in

(21) lead to equation given in (23) for the log-likelihood function (i.e. the logarithm of the ML

function) to be optimized for �.

`(�jy) = ln jAj| {z }
log�det

� n

2
ln(2�)� n

2
ln

�
1

n

�
� 1

2n| {z }

onstants

�

n

2
ln (Ay)T (I� x(xTx)�1 xT )T (I� x(xTx)�1 xT )(Ay)| {z }

SSE

(23)

The first term in (23), i.e., the log-det, is nothing but the logarithm of the sum of a collection

of scalar values including all of the eigenvalues of the neighborhood matrix W as given in (24).
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jI� �Wj =
nY

i=1

(1� ��i)! ln jI� �Wj =
nX

i=1

ln(1� ��i) (24)

Hence, the final form of the log-likelihood function is given in (25) after ignoring constant

terms in (23) and then multiplying the resulting equation with the constant �2
n

.

`(�jy) = �2
n

ln jAj + ln(Ay)T (I� x(xTx)�1 xT )T (I� x(xTx)�1 xT )(Ay) (25)

Therefore, the log-likelihood function `(�jy) is optimized using single-variable optimization

routine Golden Section Search to find the best estimates for �. Once the estimate for � is found,

both � and �2 can be computed. Finally, the predicted variable (y vectors or thematic classes)

can be computed using equation (26).

y = (I� �W)�1(x� + �) (26)

Equation (26) needs a matrix inversion algorithm in order to get the predicted observed

dependent variable y. For small problem sizes, one can use exact matrix inversion algorithms;

however, for large problem sizes (e.g., > 10K) one can use geometric series expansion to compute

the inverse matrix in (26) as stated by Lemma 6.1.

Lemma 6.1:

(I� �W)�1 =

1X
i=0

(�W)i

Proof: Since kWk � 1 and j�j < 1, we have that k�Wk < 1. We then apply Lemma 2.3.3

on page 58 of [16]. (Please also see page 301 of [20]).

In practice, we truncate the sum to at most 30 terms, fewer if � is bounded away from 1.




